Notes on Waves

Katie Decker French, k_french@mit.edu

October 8, 2010

1 Superposition

For $x_1 = A \cos \omega_1 t$ and $x_2 = A \cos \omega_2 t$, the superposition $x = x_1 + x_2$ can be written as

$$x = 2A\cos\frac{\omega_1 - \omega_2}{2}t\cos\frac{\omega_1 + \omega_2}{2}t.$$
(1)

"Beating" occurs when $|\omega_1 - \omega_2| \ll \omega_1 + \omega_2$. The envelope of the beats is $x = \pm 2A \cos \frac{\omega_1 - \omega_2}{2}t$.

2 Interference and Diffraction

2.1 Double-slit interference

See Figure 1 for a picture of the geometry involved. Interference maxima occur at $\sin \theta_n = \frac{n\lambda}{d}$.

2.2 Single-slit diffraction

Looks like $A = A_0 \frac{\sin \phi/2}{\phi/2}$, where $\frac{\phi}{2} = \frac{\pi b \sin \theta}{\lambda}$, and b is the size of the slit. See Figure 2.

3 Boundary Effects

For a pulse traveling along a line, if it hits a fixed end $(Z = \infty)$, it will reflect back in the opposite direction. If it hits a free end (Z = 0), it will reflect back in the same direction. If a wave travels from a material with impedance Z_1 to one with impedance Z_2 , the reflection coefficient is

$$\Gamma = \frac{Z_1 - Z_2}{Z_1 + Z_2}.$$
(2)

4 Doppler Effect

Relativistic limit: $f_0 = \sqrt{\frac{1-v/c}{1+v/c}} f_s$, where c is the speed of light, v is the speed of the object away from the source, f_0 is the frequency observed, and f_s is the frequency emitted. For the classical limit: $f_0 = (1 - v/c)f_s$. Remember that things moving away from you redshift.

Figure 1: Use these relations to find the maxima and minima of the double-slit interference pattern. (Source: phys.utk.edu)

Figure 2: Single slit diffraction (Source: phoenix.phys.clemson.edu)

Properties of wave systems

System	v	Z
string	$\sqrt{T/\mu}$	$\sqrt{T\mu}$
torsional wave	$\sqrt{K/I}$	\sqrt{KI}
transmission line	$1/\sqrt{LC}$	$\sqrt{L/C}$

5 Systems

See Table 5.

6 Telescopes

The size of a telescope required to achieve a certain angular resolution (for diffraction- limited systems) is

$$\theta = 1.22 \frac{\lambda}{D} \tag{3}$$

where λ is the wavelength of the radiation you would like to observe, and D is the diameter of the telescope. The factor of 1.22 is a dimensionless constant that comes from the use of Bessel functions in calculating the diffraction of the circular slit.