Notes on Waves

Katie Decker French, k_french@mit.edu

October 8, 2010

1 Superposition

For $x_{1}=A \cos \omega_{1} t$ and $x_{2}=A \cos \omega_{2} t$, the superposition $x=x_{1}+x_{2}$ can be written as

$$
\begin{equation*}
x=2 A \cos \frac{\omega_{1}-\omega_{2}}{2} t \cos \frac{\omega_{1}+\omega_{2}}{2} t \tag{1}
\end{equation*}
$$

"Beating" occurs when $\left|\omega_{1}-\omega_{2}\right| \ll \omega_{1}+\omega_{2}$. The envelope of the beats is $x= \pm 2 A \cos \frac{\omega_{1}-\omega_{2}}{2} t$.

2 Interference and Diffraction

2.1 Double-slit interference

See Figure 1 for a picture of the geometry involved. Interference maxima occur at $\sin \theta_{n}=\frac{n \lambda}{d}$.

2.2 Single-slit diffraction

Looks like $A=A_{0} \frac{\sin \phi / 2}{\phi / 2}$, where $\frac{\phi}{2}=\frac{\pi b \sin \theta}{\lambda}$, and b is the size of the slit. See Figure 2.

3 Boundary Effects

For a pulse traveling along a line, if it hits a fixed end $(Z=\infty)$, it will reflect back in the opposite direction. If it hits a free end $(Z=0)$, it will reflect back in the same direction. If a wave travels from a material with impedance Z_{1} to one with impedance Z_{2}, the reflection coefficient is

$$
\begin{equation*}
\Gamma=\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}} \tag{2}
\end{equation*}
$$

4 Doppler Effect

Relativistic limit: $f_{0}=\sqrt{\frac{1-v / c}{1+v / c}} f_{s}$, where c is the speed of light, v is the speed of the object away from the source, f_{0} is the frequency observed, and f_{s} is the frequency emitted. For the classical limit: $f_{0}=(1-v / c) f_{s}$. Remember that things moving away from you redshift.

Figure 1: Use these relations to find the maxima and minima of the double-slit interference pattern. (Source: phys.utk.edu)

Figure 2: Single slit diffraction (Source: phoenix.phys.clemson.edu)
$\underline{\text { Properties of wave systems }}$

System	v	Z
string	$\sqrt{T / \mu}$	$\sqrt{T \mu}$
torsional wave	$\sqrt{K / I}$	$\sqrt{K I}$
transmission line	$1 / \sqrt{L C}$	$\sqrt{L / C}$

5 Systems

See Table 5.

6 Telescopes

The size of a telescope required to achieve a certain angular resolution (for diffraction- limited systems) is

$$
\begin{equation*}
\theta=1.22 \frac{\lambda}{D} \tag{3}
\end{equation*}
$$

where λ is the wavelength of the radiation you would like to observe, and D is the diameter of the telescope. The factor of 1.22 is a dimensionless constant that comes from the use of Bessel functions in calculating the diffraction of the circular slit.

